BECOME AN EMSL USER
At EMSL, science is enabled by capabilities. Give your research the benefit of internationally recognized experts, and unique and state-of-the-art instruments and facilities at EMSL. Remote access to EMSL’s high-performance computer is also available to save time and travel costs. Typically, researchers use EMSL’s resources at little to no cost if results are shared in open literature.

EMSL offers several avenues for collaboration, including proposal opportunities and fellowships.

EMSL is a DOE Office of Science user facility. It provides integrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences to support the needs of DOE and the nation.

EMSL Acting Director
Harvey Bolton
Phone: (509) 371-6958
Email: harvey.bolton@pnnl.gov

Chief Technologist
Ljiljana Paša-Tolić
Phone: (509) 371-6385
Email: ljiljana.pasatolic@pnnl.gov

User Support Office
Phone: (509) 371-6003
Email: emsl@pnnl.gov

www.emsl.pnl.gov/emslweb

EMSL Acting Director

EMSL is a DOE Office of Science user facility. It provides integrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences to support the needs of DOE and the nation.

SPECIALIZED LAB AREAS
EMSL’s Plant Science Laboratory offers a variety of growth facilities to investigate plants under environmentally controlled conditions.

The Quiet Wing houses a sample preparation area and eight laboratory cells, each designed to eliminate or minimize acoustic and electromagnetic noise on specialized electron and scanning probe microscopes.

Soil fungus that lives mainly on organic biodegradable substances was imaged with a Helios 600 Nanolab dual-beam scanning electron microscope (FEI) at EMSL.
Integrated experimental and computational capabilities have helped thousands of researchers use a multidisciplinary, collaborative approach to solve some of the most important national challenges in energy and environmental sciences.

Cell Isolation and Systems Analysis
The function of proteins, cells and cell communities can be investigated using super resolution, quantitative fluorescence microscopy with single molecule sensitivity, cell sorting and transcriptomic analysis, together with proteomics, metabolomics and electron microscopy.

Galya Orr ■ (509) 371-6427 ■ galya.orr@pnnl.gov

Deposition and Microfabrication
Physical structures ranging in size from miniature objects (nanomaterials) to electrical devices (thin films) with planned properties can be made using deposition and microfabrication. Materials with specific surface, bulk and interfacial properties for energy and environmental applications can be designed and made using this integrated capability.

Mark Bowden ■ (509) 371-7816 ■ mark.bowden@pnnl.gov

Instrument Development Laboratory
Scientific discovery is enabled and expedited using unique, purpose-built instrumentation such as advanced signal acquisition and processing instrumentation, signal analysis algorithms, laboratory automation systems and data management solutions.

Eric Choi ■ (509) 371-6439 ■ eric.choi@pnnl.gov

Mass Spectrometry
Systems biology and complex mixture studies in biofuels, microbial communities, climate and environmental remediation can be analyzed with world-class separations and mass spectrometry capabilities, providing sensitive compositional and structural information at the molecular level.

Mary Lipton ■ (509) 371-6589 ■ mary.lipton@pnnl.gov

Microscopy
Advancement in energy, environment and biology research relies heavily on micro-, nano- and atomic-scale chemical and structural imaging. Many of EMSL’s microscopy instruments have high resolution imaging capabilities including complementary chemical, structural and phase information, in-situ imaging in native environments and imaging dynamic processes with high temporal resolution.

Scott Lea ■ (509) 371-6233 ■ scott.lea@pnnl.gov

Molecular Science Computing
Environmental molecular research is accelerated when combined with leading-edge hardware, efficient parallel software, predictive theories and visualization capabilities. Users are encouraged to combine computation with other state-of-the-art experimental tools, providing an integrated platform for scientific discovery.

Lee Ann McCue ■ (509) 371-2912 ■ leeann.mccue@pnnl.gov

NMR and EPR
Molecular systems important to biology, environmental remediation and sustainability are studied using a suite of nuclear magnetic resonance (NMR) spectrometers with frequencies ranging from 300 to 850 MHz. An ELDOR-capable, 9.5-GHz electron paramagnetic resonance (EPR) spectrometer complements the capability.

Nancy Washton ■ (509) 371-7094 ■ nancy.washton@pnnl.gov

Spectroscopy and Diffraction
Molecular level solid-, liquid- and gas-interactions can be investigated through structural, chemical and compositional analysis with remarkable atomic-scale spatial and high-energy resolution spectrometers and diffractometers for novel fundamental research.

Mark Bowden ■ (509) 371-7816 ■ mark.bowden@pnnl.gov

Subsurface Flow and Transport
Remediation strategies have been developed for a variety of contaminants by integrating theory, experiment and numerical simulation prior to field-scale studies. Researchers conduct pre-experiment modeling as well as experiments at various scales, and compare experimental and numerical results.

Mark Bowden ■ (509) 371-7816 ■ mark.bowden@pnnl.gov

EMSL’s SCIENCE AREAS help define and direct the development of capabilities and focus collections of user projects that will enhance scientific progress in areas of biological environmental molecular science most critical to DOE and the nation.

The **Biological Sciences Area** focuses on fundamental biogeochemical, plant, microbial, hydrologic and atmospheric processes to provide mechanistic understanding of these processes and their interdependencies across scales and their representation in predictive models.